A Riemannian rank-adaptive method for low-rank optimization
نویسندگان
چکیده
This paper presents an algorithm that solves optimization problems on a matrix manifold M ⊆ Rm×n with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the rank. The convergence of the algorithm is analyzed and a weighted low-rank approximation problem is used to illustrate the efficiency and effectiveness of the algorithm.
منابع مشابه
Guarantees of Riemannian Optimization for Low Rank Matrix Recovery
We establish theoretical recovery guarantees of a family of Riemannian optimization algorithms for low rank matrix recovery, which is about recovering an m × n rank r matrix from p < mn number of linear measurements. The algorithms are first interpreted as the iterative hard thresholding algorithms with subspace projections. Then based on this connection, we prove that if the restricted isometr...
متن کاملGuarantees of Riemannian Optimization for Low Rank Matrix Completion
We study the Riemannian optimization methods on the embedded manifold of low rank matrices for the problem of matrix completion, which is about recovering a low rank matrix from its partial entries. Assume m entries of an n× n rank r matrix are sampled independently and uniformly with replacement. We first prove that with high probability the Riemannian gradient descent and conjugate gradient d...
متن کاملRiemannian Optimization for Skip-Gram Negative Sampling
Skip-Gram Negative Sampling (SGNS) word embedding model, well known by its implementation in “word2vec” software, is usually optimized by stochastic gradient descent. However, the optimization of SGNS objective can be viewed as a problem of searching for a good matrix with the low-rank constraint. The most standard way to solve this type of problems is to apply Riemannian optimization framework...
متن کاملA Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations
We propose a new framework based on optimization on manifolds to approximate the solution of a Lyapunov matrix equation by a low-rank matrix. The method minimizes the error on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. We detail how objects from differential geometry, like the Riemannian gradient and Hessian, can be efficiently computed for this manifold...
متن کاملLow-Rank Tensor Completion by Riemannian Optimization∗
In tensor completion, the goal is to fill in missing entries of a partially known tensor under a low-rank constraint. We propose a new algorithm that performs Riemannian optimization techniques on the manifold of tensors of fixed multilinear rank. More specifically, a variant of the nonlinear conjugate gradient method is developed. Paying particular attention to the efficient implementation, ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 192 شماره
صفحات -
تاریخ انتشار 2016